summaryrefslogtreecommitdiffstats
path: root/deluge/plugins/Stats/deluge_stats/graph.py
blob: bc18913b3cc09ebf6ff944462ff7f14acf785fff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
# -*- coding: utf-8 -*-
#
# Copyright (C) 2009 Ian Martin <ianmartin@cantab.net>
# Copyright (C) 2008 Damien Churchill <damoxc@gmail.com>
# Copyright (C) 2008 Martijn Voncken <mvoncken@gmail.com>
# Copyright (C) 2007 Marcos Mobley <markybob@gmail.com>
#
# This file is part of Deluge and is licensed under GNU General Public License 3.0, or later, with
# the additional special exception to link portions of this program with the OpenSSL library.
# See LICENSE for more details.
#

"""
port of old plugin by markybob.
"""

from __future__ import division, unicode_literals

import logging
import math
import time

import gi

gi.require_foreign('cairo')  # NOQA: E402

import cairo  # isort:skip (gi checks required before import).

log = logging.getLogger(__name__)

black = (0, 0, 0)
gray = (0.75, 0.75, 0.75)
white = (1.0, 1.0, 1.0)
darkred = (0.65, 0, 0)
red = (1.0, 0, 0)
green = (0, 1.0, 0)
blue = (0, 0, 1.0)
orange = (1.0, 0.74, 0)


def default_formatter(value):
    return str(value)


def size_formatter_scale(value):
    scale = 1.0
    for i in range(0, 3):
        scale = scale * 1024.0
        if value // scale < 1024:
            return scale


def change_opacity(color, opactiy):
    """A method to assist in changing the opactiy of a color inorder to draw the
    fills.
    """
    color = list(color)
    if len(color) == 4:
        color[3] = opactiy
    else:
        color.append(opactiy)
    return tuple(color)


class Graph(object):
    def __init__(self):
        self.width = 100
        self.height = 100
        self.length = 150
        self.stat_info = {}
        self.line_size = 2
        self.dash_length = [10]
        self.mean_selected = True
        self.legend_selected = True
        self.max_selected = True
        self.black = (0, 0, 0)
        self.interval = 2  # 2 secs
        self.text_bg = (255, 255, 255, 128)  # prototyping
        self.set_left_axis()

    def set_left_axis(self, **kargs):
        self.left_axis = kargs

    def add_stat(self, stat, label='', axis='left', line=True, fill=True, color=None):
        self.stat_info[stat] = {
            'axis': axis,
            'label': label,
            'line': line,
            'fill': fill,
            'color': color,
        }

    def set_stats(self, stats):
        self.last_update = stats['_last_update']
        del stats['_last_update']
        self.length = stats['_length']
        del stats['_length']
        self.interval = stats['_update_interval']
        del stats['_update_interval']
        self.stats = stats
        return

    # def set_config(self, config):
    #      self.length = config["length"]
    #      self.interval = config["update_interval"]

    def set_interval(self, interval):
        self.interval = interval

    def draw_to_context(self, context, width, height):
        self.ctx = context
        self.width, self.height = width, height
        self.draw_rect(white, 0, 0, self.width, self.height)
        self.draw_graph()
        return self.ctx

    def draw(self, width, height):
        surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, width, height)
        ctx = cairo.Context(surface)
        self.draw_to_context(ctx, width, height)
        return surface

    def draw_x_axis(self, bounds):
        (left, top, right, bottom) = bounds
        duration = self.length * self.interval
        start = self.last_update - duration
        ratio = (right - left) / duration

        if duration < 1800 * 10:
            # try rounding to nearest 1min, 5mins, 10mins, 30mins
            for step in [60, 300, 600, 1800]:
                if duration // step < 10:
                    x_step = step
                    break
        else:
            # If there wasnt anything useful find a nice fitting hourly divisor
            x_step = ((duration // 5) // 3600) * 3600

        # this doesnt allow for dst and timezones...
        seconds_to_step = math.ceil(start / x_step) * x_step - start

        for i in range(0, duration // x_step + 1):
            text = time.strftime(
                '%H:%M', time.localtime(start + seconds_to_step + i * x_step)
            )
            # + 0.5 to allign x to nearest pixel
            x = int(ratio * (seconds_to_step + i * x_step) + left) + 0.5
            self.draw_x_text(text, x, bottom)
            self.draw_dotted_line(gray, x, top - 0.5, x, bottom + 0.5)

        self.draw_line(gray, left, bottom + 0.5, right, bottom + 0.5)

    def draw_graph(self):
        font_extents = self.ctx.font_extents()
        x_axis_space = font_extents[2] + 2 + self.line_size / 2
        plot_height = self.height - x_axis_space
        # lets say we need 2n-1*font height pixels to plot the y ticks
        tick_limit = plot_height / font_extents[3]

        max_value = 0
        for stat in self.stat_info:
            if self.stat_info[stat]['axis'] == 'left':
                try:
                    l_max = max(self.stats[stat])
                except ValueError:
                    l_max = 0
                if l_max > max_value:
                    max_value = l_max
        if max_value < self.left_axis['min']:
            max_value = self.left_axis['min']

        y_ticks = self.intervalise(max_value, tick_limit)
        max_value = y_ticks[-1]
        # find the width of the y_ticks
        y_tick_text = [self.left_axis['formatter'](tick) for tick in y_ticks]

        def space_required(text):
            te = self.ctx.text_extents(text)
            return math.ceil(te[4] - te[0])

        y_tick_width = max((space_required(text) for text in y_tick_text))

        top = font_extents[2] / 2
        # bounds(left, top, right, bottom)
        bounds = (y_tick_width + 4, top + 2, self.width, self.height - x_axis_space)

        self.draw_x_axis(bounds)
        self.draw_left_axis(bounds, y_ticks, y_tick_text)

    def intervalise(self, x, limit=None):
        """Given a value x create an array of tick points to got with the graph
        The number of ticks returned can be constrained by limit, minimum of 3
        """
        # Limit is the number of ticks which is 1 + the number of steps as we
        # count the 0 tick in limit
        if limit is not None:
            if limit < 3:
                limit = 2
            else:
                limit = limit - 1
        scale = 1
        if 'formatter_scale' in self.left_axis:
            scale = self.left_axis['formatter_scale'](x)
            x = x / scale

        # Find the largest power of 10 less than x
        comm_log = math.log10(x)
        intbit = math.floor(comm_log)

        interval = math.pow(10, intbit)
        steps = int(math.ceil(x / interval))

        if steps <= 1 and (limit is None or limit >= 10 * steps):
            interval = interval * 0.1
            steps = steps * 10
        elif steps <= 2 and (limit is None or limit >= 5 * steps):
            interval = interval * 0.2
            steps = steps * 5
        elif steps <= 5 and (limit is None or limit >= 2 * steps):
            interval = interval * 0.5
            steps = steps * 2

        if limit is not None and steps > limit:
            multi = steps / limit
            if multi > 2:
                interval = interval * 5
            else:
                interval = interval * 2

        intervals = [
            i * interval * scale for i in range(1 + int(math.ceil(x / interval)))
        ]
        return intervals

    def draw_left_axis(self, bounds, y_ticks, y_tick_text):
        (left, top, right, bottom) = bounds
        stats = {}
        for stat in self.stat_info:
            if self.stat_info[stat]['axis'] == 'left':
                stats[stat] = self.stat_info[stat]
                stats[stat]['values'] = self.stats[stat]
                stats[stat]['fill_color'] = change_opacity(stats[stat]['color'], 0.5)
                stats[stat]['color'] = change_opacity(stats[stat]['color'], 0.8)

        height = bottom - top
        max_value = y_ticks[-1]
        ratio = height / max_value

        for i, y_val in enumerate(y_ticks):
            y = int(bottom - y_val * ratio) - 0.5
            if i != 0:
                self.draw_dotted_line(gray, left, y, right, y)
            self.draw_y_text(y_tick_text[i], left, y)
        self.draw_line(gray, left, top, left, bottom)

        for stat, info in stats.items():
            if len(info['values']) > 0:
                self.draw_value_poly(info['values'], info['color'], max_value, bounds)
                self.draw_value_poly(
                    info['values'], info['fill_color'], max_value, bounds, info['fill']
                )

    def draw_legend(self):
        pass

    def trace_path(self, values, max_value, bounds):
        (left, top, right, bottom) = bounds
        ratio = (bottom - top) / max_value
        line_width = self.line_size

        self.ctx.set_line_width(line_width)
        self.ctx.move_to(right, bottom)

        self.ctx.line_to(right, int(bottom - values[0] * ratio))

        x = right
        step = (right - left) / (self.length - 1)
        for i, value in enumerate(values):
            if i == self.length - 1:
                x = left

            self.ctx.line_to(x, int(bottom - value * ratio))
            x -= step

        self.ctx.line_to(int(right - (len(values) - 1) * step), bottom)
        self.ctx.close_path()

    def draw_value_poly(self, values, color, max_value, bounds, fill=False):
        self.trace_path(values, max_value, bounds)
        self.ctx.set_source_rgba(*color)

        if fill:
            self.ctx.fill()
        else:
            self.ctx.stroke()

    def draw_x_text(self, text, x, y):
        """Draws text below and horizontally centered about x,y"""
        fe = self.ctx.font_extents()
        te = self.ctx.text_extents(text)
        height = fe[2]
        x_bearing = te[0]
        width = te[2]
        self.ctx.move_to(int(x - width / 2 + x_bearing), int(y + height))
        self.ctx.set_source_rgba(*self.black)
        self.ctx.show_text(text)

    def draw_y_text(self, text, x, y):
        """Draws text left of and vertically centered about x,y"""
        fe = self.ctx.font_extents()
        te = self.ctx.text_extents(text)
        descent = fe[1]
        ascent = fe[0]
        x_bearing = te[0]
        width = te[4]
        self.ctx.move_to(
            int(x - width - x_bearing - 2), int(y + (ascent - descent) / 2)
        )
        self.ctx.set_source_rgba(*self.black)
        self.ctx.show_text(text)

    def draw_rect(self, color, x, y, height, width):
        self.ctx.set_source_rgba(*color)
        self.ctx.rectangle(x, y, height, width)
        self.ctx.fill()

    def draw_line(self, color, x1, y1, x2, y2):
        self.ctx.set_source_rgba(*color)
        self.ctx.set_line_width(1)
        self.ctx.move_to(x1, y1)
        self.ctx.line_to(x2, y2)
        self.ctx.stroke()

    def draw_dotted_line(self, color, x1, y1, x2, y2):
        self.ctx.set_source_rgba(*color)
        self.ctx.set_line_width(1)
        dash, offset = self.ctx.get_dash()
        self.ctx.set_dash(self.dash_length, 0)
        self.ctx.move_to(x1, y1)
        self.ctx.line_to(x2, y2)
        self.ctx.stroke()
        self.ctx.set_dash(dash, offset)